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Effect of Environmental Conditions on the Permeability of High Density Polyethylene Film

to Fumigant Vapors

Sharon K. Papiernik and Scott R. Yates

Model including plastic film and wﬁter film in series

To mathematically describe the physiéal system, three differential equation are needed.
One describes the change in concentration of fuﬂﬁgant in the. source chamber, one describes
fumigant movement and partitioning in the water film and the third describes changes in
fumigant concentration in the receivihg chamber. Mathematically, these différential equations

are

;l“;.‘ T = D o

where C,(¢) and C(2), resp;ctiyely, are gas—phase concentrations in the soﬁrce aﬁd receiving
chambers; C,(x,7) is the liquid-phase concentration in the water film and is related to gas-phase
concentrations using C,, = C,, /Kh ; J, and J, are mass flux densities of the fumigént; and.LS, L,.
and L,, respectively, are the lengths of the source chamber, receiving chamber and water film.
Mass conservation requires that the mass leaving the source chamber must enter the water film,

and, mass leaving the water film must enter the receiving chamber. To solve Al, initial and
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boundary conditions are needed. At the start of the experiment, the initial fumigant
concentration is zero everywhere except the source chamber where the concentration is C,. To
solve the equation for the water film requires two boundary conditions which couple this

equation to the source and receiving chambers. They are

C,@®)
K

h

C 0,1 =

. (A2)
- ac,
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- h[ C (L, 1)

x-L,

The Equations Al and A2 can be solved using Laplace Transforms (Haberman, 1983).
Incorporating the initial and boundary conditions into A1, solving and rearranging gives the

concentration in the water phase

' C L
C (1 = 2. : +
Kh (Lr +Ls) * Lw
. (A3)
had —Dwkir ) '
2C, L, Z e {An Coslk (L,-x)] + B, Sinlk (L, —x)]}
i=1 o
with
.- h-D K kIL
" £ Coslk, L] - { Sinlk,L,)]
(Ad) -
B - -hK Wk L .
" ECos[kan] -C Sinlk, L ]
and
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A
E = -D,KkiL(4K,L+L,) + h{Lw+Kh(2(Lr+LS)—ther'LSLW)}
. (A5)
{ = DKkL(3-KK,LL)+h {thn(BKerLs + (L+L)L,) - = }
1 The concentrations in the source and receiving chamber, respectively are
Cx B = K,C\0,0 (A6)
i C K L o —Dwk:r
Cx, 1) = °t> 4 2C,LKRY. ‘ : (A7)
’ K, (L+L)+L, $M S ECoslk,L,] - C Sinfk L]
2 The k,’s are values for which the following equation yields zero
Kk, (DK KLL, - h(L, +L))Coslk,L.) +
(A8)
(Dthk,fLr + W(K kL L - 1))Sin(kan) = 0
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